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Introduction

Let G be a finitely generated profinite group (in topological groups finitely generated will
always mean topologically finitely generated). Since it is finitely generated, there is a
finite number of subgroups of any given index, and we write cn(G) to express the number
of subgroups of G of index n which are intersections of (open) maximal subgroups. We
will say that cn(G) is polynomially bounded if there exists β independent of n such that
cn(G) ≤ nβ . In [13], Mann makes the following question.

Problem 1. What are the groups for which cn(G) is polynomially bounded?

Let us see what brought Mann to ask this question (all notions and almost all the results
in this introduction will be analysed in detail in Chapter 1). Let PG(t) be the probability
that t random elements of G generate G, and let µG be the Möbius function of G defined
for all finite index subgroups of G by the rules: µG(G) = 1 and µG(H) = −

∑
K>H µG(K)

for H < G. In [7], Hall proved that for finite groups we have

PG(t) =
∑
H≤G

µG(H)/|G : H|t. (1)

Thus, in [13], Mann tries to get a generalization for finitely generated profinite groups,
wondering if this sum also holds for them. He proves that if G is prosolvable, then (1) is
convergent if we rearrange it in an special way, but he points out that it would be really
interesting knowing whether in general this sum is actually absolutely convergent. Indeed,
in such a case the sum would be always convergent whatever is the order in which the
terms of the summation are, or in other words, we would not have to take care of where
we put the brackets. Since only subgroups H with µG(H) 6= 0 occur in (1), let us denote
by bn(G) the number of such subgroups of index n. We will say that bn(G) is polynomially
bounded if it is bounded above by nα, for some α independent of n, and we will say that
µG is polynomially bounded if for every H ≤ G, the term |µG(H)| is bounded above by
|G : H|β , for some β independent of H. It is shown in [12] that the absolutely convergence
of (1) in profinite groups is equivalent to proving that both bn(G) and µG are polynomially
bounded.

We will see that if H is a subgroup such that µG(H) 6= 0, then it is an intersection
of maximal subgroups. Hence, bn(G) ≤ cn(G), and so, in order to prove that bn(G) is
polynomially bounded, it suffices to prove that actually, cn(G) is polynomially bounded.
This is what motivated Mann to formulate Problem 1, since knowing the answer of it
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would provide groups in which (1) is absolutely convergent. Nevertheless, the answer of
this question is still unknown, and Problem 1 remains being an open problem.

However, when working with finitely generated prosolvable groups (by prosolvable we
always mean pro-finite-solvable), the situation is a little better. As said, Mann found a
way to rearrange (1) in such a way that it becomes convergent. But it can be said much
more. If G is a finitely generated prosolvable group, then, as proved in [10], both µG and
bn(G) are polynomially bounded, and so, we can ensure that in this case the series (1) is
absolutely convergent. However, even if this solves the principal problem for which Mann
posed Problem 1, it does not solve Problem 1 itself. That is, we still do not know if cn(G)
is polynomially bounded in a finitely generated prosolvable group. The aim of this paper
will be analysing this case.

Problem 2 (Main Problem). Let G be a finitely generated prosolvable group. Is cn(G)
polynomially bounded?

Even if it will remain being an open problem, we will try to bring us closer to its
solution. For that purpose, we will try to follow a similar idea used by Lucchini in [10]
to prove that in a finitely generated prosolvable group G, there exists a constant α such
that bn(G) ≤ nα. In this article, Lucchini proves that if G is a finite solvable group, then,
for any subgroup H such that µG(H) 6= 0, there exists a family of maximal subgroups
M1, . . . ,Mt of G such that:

i) H = M1 ∩ . . . ∩Mt.

ii) |G : H| = |G : M1| . . . |G : Mt|.

Using this result and the fact that a finitely generated prosolvable group has polynomial
maximal subgroup growth, he concludes saying that for any finitely generated prosolvable
group G, the coefficient bn(G) is polynomially bounded.

With this in mind, we could try to generalise this result for intersections of maximal
subgroups instead of for subgroups with non-zero Möbius number, in such a way that
we could conclude similarly, saying that in finitely generated prosolvable groups, cn(G) is
polynomially bounded. Thus, we conjecture the following.

Conjecture 1. Does there exist a constant γ with the following property? If G is a finite
solvable group, and H a subgroup of G which is an intersection of maximal subgroups of
G, then there exists a family of maximal subgroups M1, . . . ,Mt such that:

i) H = M1 ∩ . . . ∩Mt.

ii) |G : M1| . . . |G : Mt| ≤ |G : H|γ .

Proving this conjecture would yield an affirmative answer to Problem 2.
In order to address it, however, we will need some preliminary results. Thus, in Chapter

2, we give a brief introduction to cohomology of finite groups taken mainly from [5], and
following principally [2] we will develop the theory of crowns in finite solvable groups. The
technical result will be taken from [4], [8] and [16].
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Once we have exposed all the theory we need, we will see in Chapter 3 that this conjec-
ture can be solved when assuming some hypothesis. Indeed, we prove that if there exists a
constant γ such that for every finite solvable group G, for every irreducible G-module V iso-
morphic as a G-module to a complemented chief factor of G and for every W ≤EndG(V ) V ,
there existsW ∗ ≤EndG(V ) W satisfying CG(W ) = CG(W ∗) and dimEndG(V )(W

∗) ≤ γ, then
our conjecture is true. At this point, we could give another conjecture.

Conjecture 2. Does there exist a constant γ with the following property? If G is a finite
solvable group, then for every G-module V isomorphic as a G-module to a complemented
chief factor of G, and for every W ≤EndG(V ) V , there exists W ∗ ≤EndG(V ) W satisfying:

i) CG(W ) = CG(W ∗).

ii) dimEndG(V )(W
∗) ≤ γ.

Thus, Conjecture 2 would imply Conjecture 1.
In view of this latter result, in Chapter 4 we will give some examples in which we

can ensure that Conjecture 2 holds. Specifically, we will see that it holds in supersolvable
groups and also in the more general case of groups with nilpotent derived subgroup. We
will also use this section to show a particular example of a prosupersolvable group for
which the amount of intersections of maximal subgroups with zero Möbius number is very
“big”.





Chapter 1

Motivation

In this first chapter we will explain more in detail what we have said in the introduction.
Thus, we will follow the same schedule that we have used there, and add also some examples
and remarks. In fact, we will start exhibiting some preliminaries, just to fix notation and
to know the context we are working on.

The chapter will principally expose the result and discussions of [13] and [10].

1.1 Preliminaries

Let G be a profinite group and consider PG(k), the probability that k random elements of
G generate G.

Definition 1.1. A profinite group G is said to be positively finitely generated, or simply
PFG, if for some k, the probability PG(k) that k random elements of G generate G is
positive.

Notice that all PFG groups are finitely generated, while the converse is not true. Indeed,
the set consisting of k-tuples in Gk that generate G could have measure zero in Gk for
every k ∈ N.

For a finitely generated profinite group G, we will write an(G) to express the number
of subgroups of index n, and mn(G) for the number of maximal open subgroups of index
n.

Definition 1.2. A profinite group G is said to have polynomial subgroup growth, or simply
PSG, if there exists k ≥ 0 such that an(G) ≤ nk for every n ≥ 1. If there exists k′ ≥ 0
such that mn(G) ≤ nk

′ , then we say that G has polynomial maximal subgroup growth, or
simply PMSG.

Of course, PSG implies PMSG, but the converse is not necessarily true. Nevertheless,
we can give a characterization of groups with PMSG as shows the following well-known
theorem.

Theorem 1.3. A profinite group has PMSG if and only if it is PFG.

1



2 1.2. The Möbius Function

Along the dissertation, as seen in the introduction, we will principally work with finitely
generated prosolvable and finite solvable groups. Therefore, it is important to know which
of the properties defined above are satisfied by them. The following theorem makes it
clear. The proof of it can be found in Theorem 10 of [13]. In this proof, Mann uses some
results of other papers, such as [15] (that essentially uses a result of Pálfy), which says that
the number of conjugacy classes of the maximal solvable subgroups of GL(n, p) (p prime)
is at most 2n−1n20 log3 n+5, and [19], which says that if T is a finite solvable group acting
irreducibly on a vector space V , then |T | ≤ |V |2.25.

Theorem 1.4. Finitely generated prosolvable groups have PMSG, and hence they are PFG.

It is not true that all prosolvable groups have PSG. For instance, it is proved in [9]
(Theorem 3.6) that every non-abelian free pro-p-group has exponential subgroup growth.
Nevertheless, by Theorem 12 of [13] we can say that the growth of the subgroups of a
finitely generated prosolvable group will not be faster than that, that is, it will be at most
exponential.

1.2 The Möbius Function

The so-called Möbius function was firstly defined as a function in number theory by August
Ferdinand Möbius in 1832. Nowadays, however, it has been extended to other areas, such
as Group Theory, Order theory, Semigroup Theory, etc. In fact, the Möbius function
associated to a group G, the one we are working with, is an special case of the Möbius
function defined in Order theory, just considering the subgroup lattice of G.

It was firstly introduced by Philip Hall in [7], and he proved that

PG(t) =
∑
H≤G

µG(H)/|G : H|t, (1.1)

making clear its importance in Probabilistic Group Theory. As said, Mann tried to gen-
eralise this for finitely generated profinite groups. The discussion we present now, which
is taken directly from [13], shows what Mann did for this purpose. In addition, if one
observes the definition of the Möbius function in the introduction, it is not easy to see at
first sight which the real meaning of it could be. This discussion will also explain one of
the possible meanings it may have.

Let G be a PFG group. Obviously, a t-tuple generates G if and only if it does not
belong to any open maximal subgroup, and the probability for that is

1−
∑ 1

|G : M |t
+
∑ 1

|G : M ∩ L|t
− . . . (1.2)

whereM , L, . . . range over all maximal subgroups ofG. Observe that this expression makes
sense only if each of the infinitely many sums occurring in it converges. Let us rearrange
it as follows. First choose a descending open subgroup neighbourhood basis of the identity
{Ni} (it is easy considering intersections in any open subgroup neighbourhood basis). Let
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Xi be the set of maximal open subgroups containing Ni, and note that there are finitely
many such maximal for every i. Then, PG(t) is the limit, as n → ∞, of the probability
that a random t-tuple does not lie in a maximal subgroup in the set Xn. This probability
is a finite sum, consisting of the terms in (1.2) that involve only maximal subgroups from
Xn, and the limit of this sum can be formally rearranged in the form

P (G, t) =
∑

µ(H)/|G : H|t, (1.3)

for some coefficients µ(H), where H ranges over all subgroups of finite index of G, these
being ordered by starting with the subgroups in X1 and their intersections, arranged in
some way, then adding the other intersections of subgroups in X2, arranged in some way,
etc. It is shown in [13] that this series does not depend on the choice of the basis {Ni}, and
that if G is a finitely generated prosolvable group, then it is convergent for t big enough
(as we will see later, and as we already have said in the introduction, this series is actually
absolutely convergent if G is a finitely generated prosolvable group).

Let us focus on the coefficients µ(H). Note that a subgroup H can occur in (1.3) with
a non-zero coefficient only if H is an intersection of maximal subgroups. In addition, for
such a subgroup, µ(H) is the difference between the number of ways to express H as the
intersection of evenly many maximal subgroups and the number of ways to express it as
such an intersection of oddly many terms.

By Theorem 1.6 below we know that if H is not an intersection of maximal subgroups
then µG(H) = 0. With this, and recalling the definition of µG, it is easily seen that µ(H)
satisfies the defined equalities of µG(H), and hence, µ(H) = µG(H).

Example 1.5. If G = Z, one obtains the classical number theoretical Möbius function,
setting µZ(nZ) = µ(n).

Mann showed in [12] that for profinite groups, proving the absolutely convergence of
(1.3) is equivalent to proving that both bn(G) and µG are polynomially bounded. Let us
focus on the coefficient bn(G). The following theorem shows that bn(G) ≤ cn(G).

Proposition 1.6. Let G be a group and H a subgroup of G of finite index. If µG(H) 6= 0,
then H is an intersection of maximal subgroups of G.

Proof. We proceed by induction on the index of H. The trivial case is obvious, so assume
|G : H| = n > 1. Since the index is finite, the index of HG is also finite, and the group
G/HG is a finite group. By the Isomophism Theorems, there is a bijection between all
subgroups of G containing H and all subgroups of G/HG containing H/HG. So, µG(H) =
µG/HG

(H/HG), and we may assume that G is finite. Denote by M1, . . . ,Mt the maximal
subgroups of G containing H. Define U := ∩1≤i≤tMi. By contradiction, suppose H < U .
By induction, it follows that all subgroups with non-zero Möbius function in which H is
properly contained are intersections of maximal subgroups, and hence, U is contained in
all of them. Thus,

µG(H) = −
∑

H<K≤G
µG(K) = −

∑
U≤K≤G

µG(K)

= −
∑

U<K≤G
µG(K)− µG(U) = −µG(U) + µG(U) = 0,
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which is a contradiction. Therefore, H = U , as we wanted.

Remark 1.7. It is not difficult to find a counterexample which shows that the converse of
this theorem is not true. For instance, consider the group

G = 〈a, b | a5 = b4 = 1, ab = a2〉.

One can check that the maximal subgroups of this group are 〈a〉 o 〈b2〉 and 〈b〉ai for i =
1, . . . , 5. The intersections of the conjugates of 〈b〉 are pairwise trivial (so Φ(G) = 1), and
the intersections of 〈a〉o〈b2〉 with the conjugates of 〈b〉 are pairwise distinct of order 2. Note
that the Möbius number of a maximal subgroup is always -1, and the Möbius number of the
intersection of two maximal subgroups that is not contained in other maximal subgroups
is 1. Knowing this, it is easy to check that µG(1) = 0, but, as noted before, 1 = Φ(G)
is an intersection of maximal subgroups. We also construct in Section 4.1.1 supersolvable
groups providing a lot of intersections of maximal subgroups with zero Möbius number.

So, in order to prove that bn(G) is polynomially bounded, it suffices to prove that so is
cn(G). As said in the introduction, using other methods, Lucchini proves in [10] that for a
finitely generated prosolvable group G, both bn(G) and µG are polynomially bounded (and
in particular, (1.3) is absolutely convergent in these groups). These “other methods” will
be the ones we will try to follow in order to prove that cn(G) is also polynomially bounded
in finitely generated prosolvable groups (or at least in order to get closer to proving it).

1.3 bn(G) is Polynomially Bounded in Prosolvable Groups

In order to prove that in finitely generated prosolvable groups bn(G) is polynomially
bounded, we will expose the results in [10]. As we will see, the key to prove that bn(G) is
polynomially bounded will be Theorem 1.12.

Let G be a finite group. To any subgroup of H of G, there corresponds a Dirichlet
polynomial PG(H, t) defined as follows:

PG(H, t) :=
∑
n∈N

an(G,H)

nt
with an(G,H) :=

∑
|G:K|=n
H≤K≤G

µG(K).

The term PG(H, t) represents the probability that t random elements, together with H,
generate G. The following remark is clear.

Remark 1.8. If an(G,H) 6= 0, then n ≤ |G : H|. Moreover, µG(H) = a|G:H|(G,H).

Let N be a normal subgroup of G. Then, we may consider the Dirichlet polynomial
PG/N (HN/N, t). The following proposition, which is proved in [11] (Proposition 16), shows
that PG/N (HN/N, t) divides PG(H, t) and says which is the divisor.

Proposition 1.9. If N is a normal subgroup of a finite group G, then

PG(H, t) = PG/N (HN/N, t)PG,N (H, t),
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where

PG,N (H, t) :=
∑
n∈N

bn(G,H,N)

nt
with bn(G,H,N) :=

∑
|G:K|=n

H≤K≤G,KN=G

µG(K).

Remark 1.10. If bn(G,H,N) 6= 0, then there exists K such that

n = |G : K| = |N : K ∩N | ≤ |N : H ∩N |.

Lemma 1.11. Let G be a finite group, H a subgroup of G and N a normal subgroup of
G. If µG(H) 6= 0, then the following holds:

i) µG(HN) 6= 0

ii) There exists K ≤ G such that H ≤ K, KN = G and H ∩N = K ∩N .

Proof. Assume µG(H) = a|G:H|(G,H) 6= 0. By Proposition 1.9, there exist positive in-
tegers u and v such that au(G/N,HN/N) 6= 0, bv(G,H,N) 6= 0 and uv = |G : H|. By
Remark 1.8 we have u ≤ |G : HN |, and by Remark 1.10 we have v ≤ |N : H ∩ N |. In
addition,

|G : H| = |G : HN ||HN : H| = |G : HN ||N : H ∩N |,

and since |G : H| = uv, it follows that u = |G : HN | and v = |N : H ∩N |. Observe that
µG/N (HN/N) = µG(HN), so we have

0 6= a|G:HN |(G/N,HN/N) = µG/N (HN/N) = µG(HN),

as we wanted.
For part ii), note that since bv(G,H,N) = b|N :H∩N |(G,H,N) 6= 0, then there exists K

with H ≤ K, KN = G and

|G : K| = |N : K ∩N | = |N : H ∩N |.

Clearly, we must have K ∩N = H ∩N .

Even if the part i) of the following theorem is proved in Proposition 1.6, we will use
different arguments to prove it for solvable groups. In fact, this different way of proving it
will provide a particular family of maximal subgroups for which the assertion of part ii)
of the theorem will be satisfied.

Theorem 1.12. Let G be a finite solvable group and let H be a subgroup of G with µG(H) 6=
0. Then, there exists a family M1, . . . ,Mt of maximal subgroups of G such that:

i) H = M1 ∩ . . . ∩Mt.

ii) |G : H| = |G : M1| . . . |G : Mt|.



6 1.3. bn(G) is Polynomially Bounded in Prosolvable Groups

Proof. The theorem will be proved by induction on |G : H|. For H = G the result is clear,
so let us proceed with the general case. The definition of µG(H) only takes into account
the subgroups over H, which means that

µG(H) = µG/HG
(H/HG),

so that we may assume HG = 1. Let N be a minimal normal subgroup of G, which of
course is not contained in H. Recall that N is abelian since G is solvable. By the previous
lemma, µG(HN) 6= 0, and there exists K such that H ≤ K, G = KN and K∩N = H∩N .
Note that since N is normal in G, then K ∩ N = H ∩ N is normal in K and since N is
abelian, K ∩N = H ∩N is also normal in N . As said, G = KN , so that K ∩N = H ∩N
is normal in G. As HG = 1, we conclude that K ∩N = H ∩N = 1. In particular, K is a
maximal subgroup of G and

|G : K| = |N | = |N : H ∩N | = |HN : H|.

If G = HN , then H = K would be a maximal subgroup of G and we would be done,
so assume HN < G. Thus, by induction, there exists a family M1, . . . ,Mu of maximal
subgroups of G such that

HN =
⋂

1≤i≤u
Mi and |G : HN | =

∏
1≤i≤u

|G : Mi|.

By the Dedekind Law, we have HN ∩K = H(N ∩K) = H, and so,

H = M1 ∩ . . . ∩Mu ∩K.

Moreover,

|G : H| = |G : HN ||HN : H| = |G : HN ||G : K| = |G : M1| . . . |G : Mu||G : K|.

Thus, M1, . . . ,Mu,K is the required family of maximal subgroups of G, and we are done.

We can finally prove the following theorem.

Theorem 1.13. Let G be a finitely generated prosolvable group. Then, there exists a
constant β such that bn(G) ≤ nβ.

Proof. By Theorem 1.4 we know that G has PMSG, which means that there exists α such
that for each n ∈ N, we have mn(G) ≤ nα. Now, for n 6= 1, we want to count the number
of subgroups H with |G : H| = n and µG(H) 6= 0. By Theorem 1.12, for each H of this
type, there exists a family of maximal subgroupsM1, . . . ,Mt such that H = ∩1≤i≤tMi and
n = n1 . . . nt, where ni = |G : Mi|. There are at most n possible factorizations of n (see
[14]), and for each fixed factorization n = n1 . . . nt, there are at most nαi choices for the
maximal subgroup Mi corresponding to ni. Therefore, there are at most nα1 . . . nαt = nα

choices for the family M1, . . . ,Mt, and we conclude that bn(G) ≤ nα+1.
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This procedure will be the one we will try to follow when working with cn(G) instead
of bn(G). Nevertheless, the results we will expose will require some preliminaries, such
as some basic result on cohomology and, specially, the important notion of the crown in
finite solvable groups. The following chapter is dedicated to develop all these requirements
before addressing the issue.





Chapter 2

Cohomology of Finite Groups and
Crowns in Finite Solvable Groups

Along this dissertation, as said, the notion of crown in finite solvable groups will be of
great importance. However, before defining it, some basic results on cohomology of finite
groups are needed for the purpose of obtaining interesting results about such crowns in
finite solvable groups. This chapter is dedicated to, firstly, develop such a theory, and then
to define the crowns and prove some properties of them.

2.1 G-modules

We rapidly give some straightforward definitions about G-modules, which are very similar
to other algebraic structures. These notions will be necessary to define the concept of
cohomology.

Definition 2.1. Let G be a finite group. We say that an abelian finite group V is a
G-module if there exists a map (v, g)→ vg of V ×G in V such that for every v, v1, v2 ∈ V
and g, g1, g2 ∈ G we have:

i) (v1 + v2)g = vg1 + vg2 .

ii) v1 = v.

iii) v(g1g2) = (vg1)g2 .

Notation 2.2. If U is a subgroup of V and H is a subgroup of G, we will write

UH = {uh | u ∈ U, h ∈ H}.

Definition 2.3. Let G be a finite group. A subgroup W of a G-module V is said to be a
G-submodule of V , and we write W ≤G V , if for every w ∈W and g ∈ G we have wg ∈W ,
or equivalently, if WG = W . If W ≤G V , then V/W can be seen as a G-module by setting

(v +W )g = vg +W,

where v ∈ V and g ∈ G.

9



10 2.1. G-modules

Definition 2.4. Let G be a finite group. A G-module V is irreducible or simple if the
only proper G-submodule of V is 0. A G-module is said to be completely reducible or
semisimple if for every G-submodule W of V there exists a G-submodule U of V such that
V = W ⊕ U .

If V is a finite G-module, one can easily check that it is completely reducible if and
only if it is a direct sum of finitely many finite irreducible G-modules.

Definition 2.5. Let G be a finite group and let V andW be G-modules. A homomorphism
of G-modules between V and W is a group homomorphism φ such that φ(vg) = φ(v)g for
every v ∈ V and g ∈ G. We say that φ is an isomorphism of G-modules between V and
W if it is a G-homomorphism and an isomorphism of groups. In this case, V and W are
said to be isomorphic as G-modules, or G-isomorphic.

By repeating the same proofs for G-modules instead of for groups, one can easily verify
that the three isomorphism theorems of groups are also satisfied when working with G-
modules.

We can define a group to be a G-group in the same way as we have defined the G-
modules but without asking them to be abelian. That is, G-groups are a generalization
of G-modules. We can also define G-homomorphisms and G-isomorphisms in the same
way. For example, a non-abelian normal subgroup of G is a G-group, but it is not a G-
module. In this case, the three isomorphism theorems are also satisfied, and furthermore,
if one of these ways of constructing new G-isomorphic groups creates an abelian group,
then the resulting G-isomorphism will be also an isomorphism between G-modules. These
two terms will arise naturally again and again, and we will use them without mention of
any specific detail. Indeed, we will often use the term G-homomorphism (G-isomorphism)
when talking about homomorphisms (isomorphisms) of G-modules.

Notation 2.6. The set of all G-homomorphisms from a G-module V to another G-module
W is denoted by HomG(V,W ). If V = W , it is denoted simply by EndG(V ).

Remark 2.7. One can give abelian group structure to the set HomG(V,W ), and in particular
to EndG(V ), by setting

(φ1 + φ2)(v) = φ1(v) + φ2(v) and (−φ)(v) = −φ(v),

for every φ1, φ2, φ ∈ HomG(V,W ) and v ∈ V . Indeed, it is routine checking that φ1 + φ2

and −φ are contained in HomG(V,W ).
Furthermore, by Schur’s lemma, we can ensure that if V and W are two irreducible

G-modules, then a G-homomorphism φ : V −→ W is either 0 or a G-isomorphism. In
particular, if V and W are not G-isomorphic, then HomG(V,W ) = 0, but on the contrary,
EndG(V ) can be seen as a division ring with the addition and the composition. Moreover,
since V is finite, so is EndG(V ), so from Weddeburn’s theorem follows that it is a field.

Definition 2.8. Let G be a finite group and V a G-module. The submodule of G-invariant
elements is the subset

VG = {v ∈ V | vg = v for every g ∈ G}.
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It is straightforward checking that VG is a G-submodule of V .
It is well known that in p-groups there is no normal subgroup intersecting trivially with

the center. The following theorem generalises this result. The proof is omitted since it is
very similar to that of p-groups.

Theorem 2.9. Let G be a finite p-group and let V be a G-module such that |V | = pr for
some integer r. If 0 6= W ≤G V , then VG ∩W 6= 0.

Definition 2.10. Let G be a finite group and V a G-module. The centralizer of W ⊆ V
in G, denoted CG(W ), is the subset

CG(W ) = {g ∈ G | wg = w for every w ∈W}.

If CG(V ) = 1, then we say that V is a faithful G-module.

The centralizer CG(V ) of a G-module V is obviously a normal subgroup of G since it
can be seen as the kernel of the homomorphism

φ : G −→ Aut(V )

g −→ (v → vg).

Moreover, if N is a normal subgroup of G lying in CG(V ), then V can be seen, in a natural
way, as a G/N -module. Furthermore, an isomorphism of V into another G-module W is a
G-isomorphism if and only if it is a G/N -isomorphism.

To end this section, we introduce a G-module that will be constantly used along this
work. Let K and H be two normal subgroups of G such that K ≤ H with H/K abelian.
Then H/K can be seen as a G-module setting

(hK)g = hgK,

for g ∈ G. In this case, CG(H/K) ≥ H. In addition, H/K is a chief factor of G if and
only if it is an irreducible G-module. In the case in which G is solvable, since a chief factor
H/K is a minimal normal subgroup of the solvable group G/K, it follows that H/K is
abelian. We will say that a chief factor H/K is Frattini if it is contained in the Frattini
subgroup of G/K. On the contrary, we will say that a chief factor H/K is complemented
if it is complemented in G/K.

2.2 Cohomology of Finite Groups

Knowing all this, we are now ready to start defining the cohomology groups of a finite
group G with coefficients in a G-module V .

It is not easy to say who defined first the cohomology groups, since it has been intro-
duced in different areas for different reasons. The first theorem of the subject could be
identified as Hilbert’s Theorem 90 in 1897, even if the notion of group cohomology was not
formulated until 1943-45. Nowadays it is as an area of active research.
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We will first give a brief theoretical definition in order to have a better understanding
of the concept. However, since the aim of this dissertation does not need deep results in
cohomology, we immediately will show explicitly how these cohomology groups look like,
and we will always work with this definition.

In the theoretical definition we use some concepts of category theory. If the reader is
not familiar with these notions, he or she can directly read the explicit definition.

Let G be a finite group, and let V be a G-module. Sending V to its G-submodule VG
of G-invariant elements yields a functor F from the category of G-modules to the category
of abelian groups. One can check that this functor is left exact, so we could consider its
right derived functors RiF .

Definition 2.11. In the notation above, we define H i(G,V ) = RiF (V ). It is obviously
an abelian group, and it is called the ith cohomology group of G with coefficients in V .

Clearly, H0(G,V ) = VG. Notice that if we see Z as a trivial G-module (every g ∈ G
acts trivially on every z ∈ Z), then VG ∼= HomG(Z, V ) via the homomorphism

HomG(Z, V ) −→ VG

ϕ −→ ϕ(1).

Therefore, recalling that the derived functors of Hom are the so called Ext-functors, we
have H i(G,V ) ∼= ExtiG(Z, V ).

This, as said, is a very conceptual definition, which allows us to understand what the
cohomology is, but does not help too much in concrete applications. As promised before,
we show now explicitly which form have the cohomology groups, although we will not prove
the equivalence between both definitions.

For every i ≥ 0, let Ci(G,V ) be the set of all functions from Gi to V (here, G0 means
a singleton, so that C0(G,V ) ∼= V ). We can give abelian group structure to this set by
setting

(φ1 + φ2)(g) = φ1(g) + φ2(g) and (−φ)(g) = −φ(g)

for every φ1, φ2, φ ∈ Ci(G,V ) and g ∈ Gi. We define the homomorphisms

di : Ci(G,V ) −→ Ci+1(G,V )

by

(diφ)(g0, g1, . . . , gi) = φ(g0, . . . , gi−1)gi

+
i−1∑
j=0

(−1)j+1φ(g0, . . . , gi−j−2, gi−j−1gi−j , . . . , gi)

+ (−1)i+1φ(g1, . . . , gi).

It is easy to check by routine computations that di+1 ◦ di = 0, so this means we actually
have a chain complex of abelian groups

V
d0−→ C1(G,V )

d1−→ C2(G,V )
d2−→ · · · d

i−1

−→ Ci(G,V )
di−→ Ci+1(G,V )

di+1

−→ · · · .
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Definition 2.12. The cohomology groups of the chain complex constructed above are
called the cohomology groups of G with coefficients in V , and denoted by H i(G,V ).

Therefore, as this definition says,

H i(G,V ) =
Zi(G,V )

Bi(G,V )
,

where Zi(G,V ) = ker di and Bi(G,V ) = Im di−1.
The following proposition can be proved easily.

Proposition 2.13. Let G be a finite group and let V and W be two G-modules. Then,

H i(G,V ⊕W ) = H i(G,V )⊕H i(G,W ).

By knowing some results concerning the first cohomology group of a finite group G, we
will be able to deduce interesting properties of it. In order to do this, we must know how
this cohomology group is. So, let us compute it explicitly.

As said, we have to compute Z1(G,V ) and B1(G,V ). By definition, for φ ∈ C1(G,V ),
we have (d1φ)(g0, g1) = φ(g0)g1 − φ(g0g1) + φ(g1), so

Z1(G,V ) = ker d1 = {φ ∈ C1(G,V ) | φ(gh) = φ(g)h + φ(h) for every g, h ∈ G}.

On the other hand, for v ∈ V we have (d0g)(g0) = vg0 − v, so

B1(G,V ) = Im d0 = {φ ∈ C1(G,V ) | there exists v ∈ V such that φ(g) = vg − v}.

Proposition 2.14. Let G be a finite group and let V be a G-module. Then, for every
n ∈ N we have:

i) exp(Hn(G,V )) | |G|

ii) exp(Hn(G,V )) | exp(V )

Proof. For simplicity, we will prove part i) only for H1(G,V ). In fact, along the paper
we will only use this proposition in such a case. Using the construction above, let φ ∈
Z1(G,V ). Then, for every h ∈ G, we have φ(h) = φ(gh)− φ(g)h for every g ∈ G. Thus,

|G|φ(h) =
∑
g∈G

φ(gh)−
∑
g∈G

φ(g)h =
∑
g∈G

φ(g)− (
∑
g∈G

φ(g))h.

Taking v = −
∑

g∈G φ(g) we deduce |G|φ ∈ B1(G,V ). Therefore, exp(H1(G,V )) | |G|.
For the second part, just observe that for every φ ∈ Cn(G,V ) and for every g ∈ Gn,

we have φ(g) ∈ V . So, exp(V )φ(g) = 0 for every φ ∈ Cn(G,V ) and for every g ∈ Gn.

Let G be a group written multiplicatively. Let V a normal abelian subgroup of G and
H a finite subgroup of G complementing V . Then, H can act on V via conjugation in such
a way that V becomes an H-module.
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Theorem 2.15. In the situation above, |H1(H,V )| is equal to the number of conjugacy
classes of the complements of V in G. In particular, if H1(H,V ) is trivial, then all the
complements of V in G are conjugate.

Proof. Let H ′ be a complement of V in G. Then, since H also complements V , for every
h′ ∈ H ′ we can find two unique elements x ∈ H and vx ∈ V such that h′ = xvx. We define
the function φ : H → V by φ(x) = vx, so that

H ′ = {xφ(x) | x ∈ H}.

For every x, y ∈ H we have xφ(x)yφ(y) = xyφ(x)yφ(y), and since V is normal in G, then
φ(x)yφ(y) ∈ V . So, φ(xy) = φ(x)yφ(y). This means that the functions φ that can arise for
different conjugates are exactly those of Z1(H,V ) (note that in this case we are writing
the operation multiplicatively).

Now, H ′ is a conjugate of H if and only if xφ(x) = xv = x(v−1)xv for every x ∈ H and
a suitable v ∈ V . So, φ(x) = (v−1)xv and actually φ ∈ B1(H,V ). The result follows now
easily.

Before ending this section we will give a result concerning exact sequences ofG-modules.
However, its proof requires some preliminaries, so it will be omitted. One could find the
proof in [5].

Lemma 2.16. Let G be a finite group and let V be a G-module. Then, for every N E G,
the sequence

0 −→ H1(G/N, VN ) −→ H1(G,V ) −→ H1(N,V )

is exact.

2.3 Crowns in Finite Solvable Groups

Since we are interested in solvable groups, we dedicate this section to exposing some
important properties of them. In particular, we will show what the crowns are, and we
will give some very useful results related with them. In order to prove them, the already
proved theorems of the previous chapter concerning cohomology will be really helpful.

We start with a proposition which generalises the well known property of having prime
power order of the minimal normal subgroups of a solvable group. The proof is omitted
since it is very similar to that of minimal normal subgroups.

Proposition 2.17. Let G be a finite solvable group and let V be an irreducible G-module.
Then |V | = pr for some prime p and some integer r.

Theorem 2.19 below will allow us to use Theorem 2.15 when working with some kind
of chief factors of finite solvable groups. Before proving it, however, we need a lemma.

Lemma 2.18. Let G be a solvable group and let V be an irreducible G-module of order pr.
Then, G/CG(V ) has not any normal proper p-subgroup.
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Proof. By contradiction, assume there exists a subgroup N such that CG(V ) < N E G
and N/CG(V ) is a p-group. Since V is irreducible, it follows that VN = V or VN = 0.
However, by Theorem 2.9, considering V as a N/CG(V )-module, we have VN 6= 0. So
VN = V , and hence N ≤ CG(V ), which is a contradiction.

Theorem 2.19. Let G be a finite solvable group and V an irreducible G-module. If
CG(V ) = 1, then |H1(G,V )| = 1.

Proof. If G = 1 it is obvious, so assume G 6= 1. Assume also |V | = pr for some prime
p and some integer r, and let N be a minimal normal subgroup of G. By Lemma 2.18,
we have (|N |, p) = 1. Therefore, by Theorem 2.14, we have H1(N,V ) = 0. In addition,
since V is irreducible, VN = V or VN = 0. If VN = V , then N ≤ CG(V ) = 1, which is a
contradiction, so we have VN = 0. By Lemma 2.16 we deduce that the sequence

0 −→ H1(G/N, VN ) −→ H1(G,V ) −→ H1(N,V )

is exact. In our case 0 → 0 → H1(G,V ) → 0 is exact. Therefore, H1(G,V ) = 0 and we
are done.

Corollary 2.20. Let G be a solvable group and let M/N be a chief factor of G. If
CG(M/N) = M , then M/N is complemented in G/N and all its complements are conju-
gate.

Proof. We can always work modulo N , so we will assume N = 1, that is, M/N = M and
G/N = G. Of course, M is a minimal normal subgroup of G, and since G is solvable,
|M | = pr for some prime p and some r ∈ N. Consider the factor group G/M , and take a
minimal normal subgroup L/M of G/M . Again, |L/M | = qs for some prime q and some
s ∈ N.

If p = q, then L is a p-group, and since Z(L) is normal in G, we have M ∩Z(L) = M .
Then, L ≤ CG(M) = M which is a contradiction.

So, assume p 6= q. Let Q be the Sylow q-subgroup of L. Clearly L = QM . By the
Frattini Argument we have

G = LNG(Q) = QMNG(Q) = MNG(Q).

Since M is abelian, M ∩NG(Q) is normal in both M and NG(Q), so it is normal in G. By
minimality of M we have either M ∩NG(Q) = 1 or M ≤ NG(Q). In the first case NG(Q)
would be the desired complement of M , so we would be done. So, assume M ≤ NG(Q).
Observe that M ∩ Q = 1, and since M ≤ NG(Q), then Q is normal in MQ = L. Thus,
L = MQ = M ×Q, and in particular, Q ≤ CG(M) = M , which is a contradiction. Thus,
we have proved that M/N is complemented in G/N .

Now, recall that M/N is irreducible as a G/M -module, and by Theorem 2.19 we have

|H1(G/M,M/N)| = 1.

So, by Theorem 2.15 we get the result.
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The following lemma will be helpful when proving some results.

Lemma 2.21. Let G be a solvable group andM a maximal subgroup of G. Then, the group
G/MG has a unique minimal normal subgroup N/MG, and in addition, CG(N/MG) = N .
Moreover, if H/K is a chief factor complemented by the maximal subgroup M/K of G/K,
then

H/K ∼=G N/MG = CG(N/MG)/MG = CG(H/K)/MG,

where N/MG is the unique minimal normal subgroup of G/MG.

Proof. Consider the subgroup HMG/MG of G/MG. Since H ∩MG is normal in G and K
is contained in both H and MG, we have

H ∩MG = K,

and then,
HMG/MG

∼= H/K.

Notice that they are also isomorphic as G-modules, so HMG/MG is an abelian minimal
normal subgroup of G/MG complemented by M , and HMG ≤ CG(HMG/MG). Note that
CG(HMG/MG)∩M is normal in G since it is normalized by bothM and HMG. Therefore,
since M/MG is core-free in G/MG, we have CG(HMG/MG) ∩M = MG. Now,

CG(HMG/MG) = CG(HMG/MG) ∩HMGM = HMG(CG(HMG/MG) ∩M) = HMG.

Thus,
CG(H/K)/MG = CG(HMG/MG)/MG

∼=G H/K,

as asserted.

From now on we will be constantly working with chief factors. Thus, it would be
interesting knowing some useful properties of them. In fact, our next goal will be proving a
form of the Jordan-Hölder Theorem, which says that in any two chief series of a finite group
G, there exists a bijection between the chief factors of them, such that two correspondent
chief factors are G-isomorphic. In this case, we will prove even more. We will show that
a chief factor of one of our chief series is a Frattini chief factor if and only if so it is the
corresponding chief factor of the other chief series. The proof, however, will require three
technical lemmas, which we expose now.

Lemma 2.22. Let G be a finite group. If N E G, H ≤ G and N ≤ Φ(H), then N ≤ Φ(G).

Proof. By contradiction, assume N 6≤ Φ(G). Then, there exists a maximal subgroup M of
G not containing N , and G = NM . By the Dedekind Law we have

H = H ∩NM = N(H ∩M),

and since N ≤ Φ(H), it follows that H = H ∩ M . Thus, N ≤ H ≤ M , which is a
contradiction.
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Lemma 2.23. Let K and N be abelian normal subgroups of a finite group G such that
K/N is a chief factor of G and N is a minimal normal subgroup of G. If K/N ≤ Φ(G/N),
then K ≤ Φ(G)N .

Proof. If N ≤ Φ(G), then Φ(G/N) = Φ(G)/N , so the lemma follows trivially. So, suppose
that N 6≤ Φ(G). Since N is not Frattini, there exists a maximal subgroupM not containing
it, and since N ∩M is normal in bothM and N (recall that N is abelian), then it is normal
in G = NM . Note that M ∼= G/N , and this isomorphism yields Φ(M)N/N = Φ(G/N).
Therefore, K ≤ Φ(M)N .

Note now that Φ(M) ∩ K is normalized by M and is also centralized by N , so it is
normal in G. Therefore, from Lemma 2.22 we can conclude that Φ(M) ∩ K ≤ Φ(G).
Consequently, we obtain

K = Φ(M)N ∩K = (Φ(M) ∩K)N ≤ Φ(G)N.

Lemma 2.24. Let N1 and N2 be two distinct minimal normal subgroups of a finite group
G. Then there exists a bijection

σ : {N1, N1N2/N1} −→ {N2, N1N2/N2}

such that corresponding chief factors are G-isomophic and Frattini chief factors correspond
to one another.

Proof. Write N := N1N2. Let us assume first N1 ≤ Φ(G). Then, it is known that since N2

is normal, N1N2/N2 ≤ Φ(G)N2/N2 ≤ Φ(G/N2). IfN/N1 is also Frattini, sinceN1 ≤ Φ(G),
we have N ≤ Φ(G), and so all four factors in the statement are Frattini. In this case, the
map σ with σ(N1) = N/N2 and σ(N/N1) = N2 satisfies the stated requirements. If, on the
other hand, N/N1 is not Frattini, then N2 is not Frattini (just repeating the arguments
used before), and the same choice of σ will suffice. Likewise if all chief factors are not
Frattini.

It remains to consider the case in which N1 and N2 are non-Frattini and (say) N/N2 is
Frattini. The Frattini subgroup of a finite group is always nilpotent, so in particular, so is
Φ(G/N2). Therefore, the minimal normal subgroup N/N2 is abelian and hence so is N1.
Since it is not Frattini, there exists a maximal subgroup M not containing N1, and since
M ∩N1 is normal in both M and N1 (recall that N1 is abelian), then so it is in G. This
means that M ∩N1 = 1, so actually M is a complement of N1. Let N3 := M ∩N . Then,
by the Dedekind Law,

N3N1 = (M ∩N)N1 = MN1 ∩N = N,

and so, N/N1
∼= N3. If N3 = N2, thenM/N2 is a complement in G/N2 to N/N2, which is a

contradiction to the fact that N/N2 is Frattini. Hence, N3 6= N2, and we have N = N3N2

and N3
∼= N/N2

∼= N1. Consequently, N3 is abelian, and since N = N1N3
∼= N1 × N3,

then N is also abelian. By Lemma 2.23 we have N2(N ∩Φ(G)) = N ∩N2Φ(G) = N , so it
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follows that N ∩ Φ(G) = N3. Therefore, N/N1 = N3N1/N1 is Frattini, and all four chief
factors in question are G-isomorphic. If we then take σ(N1) = N2 and σ(N/N1) = N/N2,
we are done.

Theorem 2.25. Let G be a finite group. Then, for any two chief series of G

G = X0 > X1 > . . . > Xn = 1 and G = Y0 > Y1 > . . . > Ym = 1

we have:

i) n = m, and there exists σ ∈ Sym(n) such that

Xi/Xi−1
∼=G Yσ(i)/Yσ(i)−1.

ii) Xi/Xi+1 is a Frattini chief factor of G if and only if so is Yσ(i)/Yσ(i)+1.

Proof. We will prove both assertions together. Let us call L1 and L2, respectively, to our
chief series. We will prove it by induction on the sum of the lengths of the composition
series. If n + m = 0 it is trivial, so let n + m ≥ 1. If Xn−1 = Ym−1, then we can apply
inductive hypothesis to G/Xn−1. Thus, we have a suitable correspondence between the
chief factors lying above Xn−1, and making Xn−1 correspond to Ym−1 we have the result.

Therefore, assume that the minimal normal subgroups Xn−1 and Ym−1 are distinct,
and define N := Xn−1Ym−1. Since Xn−1∩Ym−1 = 1, it follows that N/Xn−1 and N/Ym−1

are chief factors of G, and there exist two chief series of the form

G = Z0 > Z1 > . . . Zk > N > Xn−1 > Xn = 1

and
G = Z0 > Z1 > . . . Zk > N > Ym−1 > Ym = 1.

Let us call them L3 and L4 respectively. We will say that two chief series are “equivalent” if
they satisfy the requirements of this theorem. Observe that being equivalent is a transitive
property. Since the series L1 and L3 have the minimal normal subgroup Xn−1 in common,
as proved before, they are equivalent. Similarly, L2 and L4 are equivalent. Finally, as the
series L3 and L4 coincide above N , it clearly follows from Lemma 2.24 that they are also
equivalent. Therefore, L1 and L2 are equivalent, as desired.

Remark 2.26. Note that if G is solvable, then a chief factor is Frattini if and only if it is
complemented. So, in that case, we can replace “Frattini” by “complemented” in part ii)
of the previous theorem.

Now we are ready to define the crowns. The concept of crown of a solvable group
was firstly introduced by Gaschütz in [6] when he was analysing the structure of the chief
factors of a solvable group G as G-modules. However, the notion of crown had been used
implicitly on previous papers of Gaschütz himself.
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Definition 2.27. Let G be a finite solvable group and V an irreducible G-module. Let

∆(G,V ) := {N E G | N ≤ CG(V ), CG(V )/N ∼=G V }

and write RG(V ) :=
⋂
N∈∆(G,V )N or RG(V ) := CG(V ) if ∆(G,V ) = ∅. The factor group

CG(V )/RG(V ) is called the crown of V .

Remark 2.28. If RG(V ) 6= CG(V ), then there exists a chief factor CG(V )/N isomorphic
to V as a G-module, so if RG(V ) 6= CG(V ), we can restrict our choice of an irreducible
G-module to a chief factor of G. Recall that these chief factors are abelian since G is
solvable.

The definition of crown can be extended to the non-abelian case (see [2]), that is, to
the case in which we choose a non abelian chief factor of G instead of a G-module (and of
course, G is not solvable). However, since this dissertation is focused on solvable groups,
we will restrict ourselves to the abelian case.

Until the end of this chapter we will use the notation introduced in Definition 2.27. In
other words, G will be a finite solvable group, V an irreducibleG-module and CG(V )/RG(V )
the crown associated to V .

Next theorem shows how these crowns look like.

Theorem 2.29. The crown CG(V )/RG(V ) is isomorphic as a G-module to the direct
product of some copies of V , i.e.,

CG(V )/RG(V ) ∼=G V
δG(V ),

for some δG(V ) ≥ 0.

Proof. If ∆(G,V ) = ∅ it is obvious, so assume ∆(G,V ) 6= ∅. Let N1, . . . , Ns be the normal
subgroups contained in ∆(G,V ), and write Uj = ∩1≤i≤jNi for 1 ≤ j ≤ s and U0 = CG(V ).
Reordering the Ni subgroups, we may assume

N1 = U1 > U2 > . . . > UδG(V ) = UδG(V )+1 = . . . = Us = RG(V )

for some 1 ≤ δG(V ) ≤ s. Thus, if we define a G-homomorphism

φ : CG(V ) −→
δG(V )∏
i=1

CG(V )/Ni
∼=G V × δG(V ). . . × V = V δG(V )

by φ(g) = (gNi)1≤i≤δG(V ), the kernel of φ is then UδG(V ) = RG(V ). This means that the
crown CG(V )/RG(V ) is G-isomorphic to a G-submodule of V δG(V ).

Let us prove that |CG(V )/RG(V )| = |V |δG(V ). For every 1 ≤ i ≤ δG(V ), note that
Ui−1Ni = CG(V ), so we have

Ui−1

Ui
=

Ui−1

Ui−1 ∩Ni

∼=G
Ui−1Ni

Ni
=
CG(V )

Ni

∼=G V.
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Therefore, |CG(V )/RG(V )| = |V |δG(V ), so that

CG(V )

RG(V )
∼=G V

δG(V ).

From now on, we will always denote by δG(V ) the number for which CG(V )/RG(V ) ∼=G

V δG(V ).
This theorem and Theorem 2.25 show that each chief factor between CG(V ) and RG(V )

is isomorphic to V as a G-module. Moreover, we can see in the following theorem that
these chief factors are actually complemented.

Theorem 2.30. Each chief factor H/K between CG(V ) and RG(V ) is complemented in
G/K.

Proof. Using the notation of the proof of Theorem 2.29, we will prove that for every
1 ≤ i ≤ δG(V ), the quotient Ui−1/Ui ∼=G V is complemented in G/Ui. As said before,
Ui−1Ni = CG(V ), so

CG(V )/Ni
∼=G Ui−1/Ui ∼=G V.

By Corollary 2.20, CG(V )/Ni is complemented in G/Ni, so let D/Ni be its complement.
On the one hand,

Ui−1D = Ui−1DNi = CG(V )D = G.

On the other hand,

Ui−1 ∩D = Ui−1 ∩ CG(V ) ∩D = Ui−1 ∩Ni = Ui.

Thus, D/Ui is also a complement of Ui−1/Ui in G/Ui. The lemma follows by Theorem
2.25.

Our next goal will be proving that the group RG(V ) is unique and minimal satisfying
the property that CG(V )/RG(V ) is complemented. We can find this result (Theorem
2.33) after the following two lemmas. The first one says that, indeed, CG(V )/RG(V ) is
complemented, while the following says that there is no more complemented chief factor
G-isomorphic to V over CG(V ) and under RG(V ).

Lemma 2.31. The crown CG(V )/RG(V ) is complemented in G/RG(V ).

Proof. We use again the notation of the proof of Theorem 2.29. By Theorem 2.30, we
know that each Ui−1/Ui is complemented in G/Ui for every i ≥ 1. So, let D1 and D2 be
the complements of CG(V )/U1 and U1/U2 respectively. On the one hand,

(D1 ∩D2)CG(V ) = (D1 ∩D2)U1N2

and by the Dedekind Law, this is equal to

(D1 ∩D2U1)N2 = (D1 ∩G)N2 = D1N2 = D1U1N2 = D1CG(V ) = G.
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On the other hand,
(D1 ∩D2) ∩ CG(V ) = U1 ∩D2 = U2.

Therefore, we have proved that D1∩D2 is a complement of CG(V )/U2. Following the same
procedure for all chief factors Ui−1/Ui we conclude that CG(V )/RG(V ) is complemented
in G/RG(V ).

Lemma 2.32. There is no complemented chief factor H/K of G isomorphic to V as a
G-module over CG(V ) or under RG(V ).

Proof. The chief factor H/K is abelian, so clearly, H ≤ CG(H/K) = CG(V ).
On the other hand, assume by contradiction that there exists a complemented chief

factor H/K ∼=G V with H ≤ RG(V ). Since G is solvable, it follows that its complement
must be a maximal subgroup M/K of G/K. By Lemma 2.21, we have

CG(V )/MG
∼=G H/K ∼=G V,

and so MG ∈ ∆(G,V ). This implies H ≤ RG(V ) ≤ MG ≤ M , which is a contradiction.
So, H 6≤ RG(V ), as we wanted.

Theorem 2.33. The subgroup RG(V ) of G coincides with the unique minimal subgroup R
of G such that CG(V )/R is isomorphic as a G-module to a direct product of some copies
of V and CG(V )/R is complemented in G/R.

Proof. By Theorem 2.29 we know that CG(V )/RG(V ) ∼=G V δG(V ) for some δG(V ) ≥ 0,
and by Lemma 2.31, CG(V )/RG(V ) is complemented.

Let us prove the minimality of RG(V ). Assume there exists R′ E G such that
RG(V )/R′ ∼=G V s for some s ≥ 1, and suppose CG(V )/R′ is complemented in G/R′.
Of course, there exists N E G such that R′ ≤ N ≤ RG(V ) and RG(V )/N ∼=G V . Besides,
since CG(V )/R′ is complemented in G/R′, so is CG(V )/N in G/N . Then, there exists
D ≤ G such that G/N ∼= V δG(V )+1 oD/N , and so, RG(V )/N ∼=G V is complemented in
G/N by V δG(V ) o D/N . However, this is a contradiction by Lemma 2.32. So, we have
proved the minimality.

We prove now the uniqueness. By contradiction, assume there exists a normal subgroup
R′ of G where CG(V )/R′ is complemented and isomorphic as a G-module to some copies
of V and RG(V ) 6≤ R′. Then RG(V )R′ is a normal subgroup of G lying in CG(V ), and
so, RG(V )R′/RG(V ) is G-isomorphic to some copies of V . Thus, there exists N E G such
that R′ ≤ N ≤ R′RG(V ) and R′RG(V )/N ∼=G V . Since CG(V )/R′ is complemented in
G/R′, so is CG(V )/N in G/N , and using the same arguments as before, there exists a
maximal subgroup M/N of G/N complementing R′RG(V )/N . Besides, MG ∈ ∆(G,V ).
Thus, N,RG(V ) ≤ MG ≤ M , so R′RG(V ) ≤ M , which is a contradiction. So, RG(V ) is
unique.

It is now easy to prove that the number δG(V ) of the copies of V is characterised by
the following.
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Theorem 2.34. Let G be a solvable group and V a finite irreducible G-module. Then,
the number δG(V ) of copies of V for which the direct product V δG(V ) is isomorphic to the
crown CG(V )/RG(V ), is precisely the number of complemented chief factors G-isomorphic
to V of any chief series of G.

Proof. It follows immediately from Theorem 2.30, Lemma 2.32 and Theorem 2.25.

We have seen in Lemma 2.31 that the crown CG(V )/RG(V ) has a complement in
G/RG(V ). It would be interesting if we had a similar result for RG(V ) in CG(V ), that is,
if we could say that RG(V ) is complemented in CG(V ). Even if this is not always true, the
following theorem proves that if Φ(G) = 1, then there exists a chief factor of G for which
we can say even more. First, however, we need a lemma, which will ensure the triviality
of the Frattini subgroup when working modulo RG(V ).

Theorem 2.35. The factor group G/RG(V ) has trivial Frattini subgroup, that is,

Φ(G/RG(V )) = 1.

Proof. Let N/RG(V ) be a minimal normal subgroup of G/RG(V ). If N ≤ CG(V ), then,
by Theorem 2.30, it is complemented in G/RG(V ), so N 6≤ Φ(G/RG(V )).

If N 6≤ CG(V ), consider a minimal normal subgroup M/RG(V ) which is contained in
CG(V )/RG(V ). Of course, N ∩M = RG(V ), and so, since both N and M are normal,
N ≤ CG(M/RG(V )). However, this is a contradiction since M/RG(V ) ∼=G V . Therefore,
there is not any minimal normal subgroup of G/RG(V ) contained in the Frattini subgroup
of G/RG(V ), so that Φ(G/RG(V )) = 1.

Theorem 2.36. Let G be a finite solvable group with Φ(G) = 1. Then there exists an
irreducible G-module V and a subgroup D 6= 1 of G such that

CG(V ) = RG(V )×D.

In such a case, D ∼=G V
δG(V ).

Proof. We argue by induction on the order of G. Let N be a minimal normal subgroup
of G. Since Φ(G) = 1, there exists a maximal subgroup K of G not containing N , and
since G is solvable, N ∩ K is normal in both N and K. Thus, since G = NK, we have
N ∩K E G, so that N ∩K = 1, and K is a complement of N . As we have seen, N is an
irreducible G-module, and by Theorem 2.34, the crown CG(N)/RG(N) is not trivial. By
Lemma 2.32 we have N 6≤ RG(N). Thus, there exists N0 ∈ ∆(G,N) such that N 6≤ N0,
and then CG(N) = N ×N0.

If N0 = RG(N), then the normal subgroup D = N and the irreducible G-module
V = N fulfils our requirements.

So, we may assume that RG(N) < N0, or which is the same, δG(N) ≥ 2. Then,
RG(N)×N < CG(N), and write F/N := Φ(G/N). It is easy to check that

CG(N)/N

RG(N)N/N
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is a crown of G/N associated to N , and by Theorem 2.34, it is not trivial. By Theorem
2.35 we know that

Φ(
G/N

RG(N)N/N
) = 1,

so we have F ≤ RG(N)N . By the Dedekind Law, F = F ∩RG(N)N = N × (F ∩RG(N)).
Write M := F ∩ RG(N). Assume M 6= 1, and let A be a minimal normal subgroup of G
contained in M . Since Φ(G) = 1, there exists a maximal subgroup L of G complementing
A, and consider G/LG. Note that by Lemma 2.21 we have

ANLG/LG ≤ Soc(G/LG) = ALG/LG.

So, AN = A(AN ∩ LG). On the one hand, LAN = G, and on the other hand, by the
Dedekind Law,

L ∩AN = L ∩ (A(AN ∩ LG)) = (L ∩A)(AN ∩ LG) = AN ∩ LG.

Thus, L complements both AN/(AN ∩ LG) and A. By Theorem 2.25, all chief factors of
AN are complemented, so we deduce that AN/N is complemented in G/N . However, this
is a contradiction, since AN/N ≤ F/N = Φ(G/N). Therefore, F = N , and we can apply
the inductive hypothesis. Thus, there exists V an irreducible G/N -module and a subgroup
D1/N 6= 1 such that CG/N (V ) = RG/N (V )×D1/N .

Suppose first that V ∼=G N . Then CG/N (V ) = CG(N) and RG/N (V ) = RG(N) × N .
So, taking D = D1 we have CG(N) = RG(N) ×D1. Indeed, RG(N)D1 = RG(N)ND1 =
CG(N) and by the Dedekind Law,

N = D1 ∩RG/N (V ) = D1 ∩ (RG(N)×N) = (D1 ∩RG(N))×N,

so D1 ∩RG(N) = 1.
Suppose now that the chief factors of G between N and D1 are not G-isomorphic

to N . If CG(N)/N ≤ (RG(N)N/N)(D1/N), then by the Dedekind Law, CG(N) =
RG(N)(CG(N) ∩D1). Then

CG(N)/RG(N) ∼=G RG(N)(CG(N) ∩D1)/RG(N) ∼=G (CG(V ) ∩D1)/(RG(N) ∩D1),

and recall that N ≤ CG(N)∩D1. Hence all chief factors of G between (RG(N)∩D1)×N
and CG(N) ∩ D1 are G-isomorphic to N . By assumption no chief factor of G between
N and D1 is G-isomorphic to N , so we deduce that CG(N) ∩ D1 = (RG(N) ∩ D1) × N .
Then, CG(N) = RG(N)N , which is a contradiction since we said δG(N) ≥ 2. Therefore,
we assume (RG(N)N/N)(D1/N) < CG(N)/N . Note that

RG(N) ≤ RG(N)N ≤ RG(N)D1 ≤ CG(N),

so every chief factor of G between RG(N)N and RG(N)D1 is G-isomorphic to N . Since

D1RG(N)/NRG(N) = D1NRG(N)/NRG(N)
∼=G D1/(D1 ∩NRG(N))
∼=G D1/N(D1 ∩RG(N)),
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and we said that all chief factors of G between M and D1 are not G-isomorphic to N , we
have D1 = N(D1 ∩RG(N)). In this case, we take D = D1 ∩RG(N) 6= 1 and we have

CG/N (V ) = RG/N (V )×D.

Since the crown CG/N (V )/RG/N (V ) is not trivial, by Theorem 2.34, V must be isomorphic
as a G-module to some chief factor H/K of G over N . Thus, N ≤ H ≤ CG/N (V ), so
actually CG/N (V ) = CG(V ). With this observation, we are done.

Remark 2.37. This theorem is no longer true if Φ(G) 6= 1. For instance, consider the finite
cyclic (and so, finite solvable) group C12. Notice that Φ(C12) = C6 ∩ C4 = C2 6= 1 and
consider also its minimal normal subgroup C2. Since C12 is abelian, CC12(C2) = C12, and
consider the chief series

C12 ≥ C6 ≥ C3 ≥ 1.

Since C6/C3
∼=C12 C2 is a Frattini chief factor, the unique non-Frattini chief factor C12-

isomorphic to C2 of our chief series is C12/C6, so we have RC12(C2) = C6. However, the
subgroups supplementing C6 are exactly C4 and C12, which of course do not complement
it. So, there is not any subgroup D such that

CC12(C2) = RC12(C2)×D,

as asserted.
The following result, the last one of the chapter, will be interesting in the situation of

Theorem 2.36. Indeed, the subgroups D of both statements could be taken to be the same.

Theorem 2.38. Let D be a direct product of minimal normal subgroups of G which are
isomorphic as a G-module to V . If there exists a subgroup H of G such that

HD = HRG(V ) = G,

then H = G.

Proof. Suppose by contradiction that H 6= G, and letM be a maximal subgroup of G con-
taining H. Clearly MD = MRG(V ) = G. By Lemma 2.32 RG(V ) has no complemented
chief factors G-isomorphic to V , so D ∩RG(V ) ≤ Φ(G). Observe that

[M ∩D,RG(V )] ≤ [D,RG(V )] ≤ D ∩RG(V ) ≤ Φ(G),

which means that (M ∩D)Φ(G)/Φ(G) ≤ Z(G/Φ(G)). Therefore, (M ∩D)Φ(G) E G, and
in the same way, (M ∩RG(V ))Φ(G) E G.

Set K := (M ∩ D)(M ∩ RG(V ))Φ(G). Note that K is normal in G, and consider
G := G/K. Clearly, D = DK/K 6= 1 since otherwise, D ≤ K ≤ M and G = MD = M .
Similarly, RG(V ) 6= 1. Moreover, M ∩ D = 1 and M ∩ RG(V ) = 1, so M is a maximal
subgroup of G complementing both D and RG(V ). In particular, D and RG(V ) are both
minimal normal subgroups of G, and by Lemma 2.21 it follows that D ∼=G RG(V ). Of
course,

DK/K ∼=G D/(D ∩K) ∼=G V,
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so
V ∼=G DK/K ∼=G RG(V )K/K ∼=G RG(V )/(RG(V ) ∩K).

In addition, MRG(V ) = G and since RG(V ) ∩ K ≤ K ≤ M , we have M ∩ RG(V ) =
RG(V )∩K (otherwiseM ∩RG(V ) = RG(V )). So, RG(V )/(RG(V )∩K) is a complemented
chief factor G-isomorphic to V under RG(V ), which is a contradiction by Lemma 2.32.





Chapter 3

Intersections of Maximal Subgroups
in Finite Solvable Groups

We recall our main problem. For a finitely generated prosolvable group G, how faster is
the growth of cn(G) with respect to that of bn(G)? In Theorem 1.13, in order to prove
that bn(G) was polynomially bounded, the results in Theorem 1.12 have been crucial. As
said in the end of the first chapter, we will try to do an analogous for cn(G), that is, we
will try to get a similar result to Theorem 1.12 when working with arbitrary intersections
of maximal subgroups instead of subgroups with zero Möbius number.

When working with a finite solvable group G, we will consider almost always the crown
associated to an irreducible G-module V . Moreover, we will often work modulo RG(V ).
For this reason, in order to analyse the intersections of maximal subgroups in finite solvable
groups, the discussion we present now is fundamental.

3.1 Maximal subgroups Supplementing V t

Let H be a finite solvable group and G = V t o H where V is a faithful irreducible
H-module, so that H1(H,V ) = 0 (Proposition 2.19). By Proposition 2.13 we have
|H1(H,V t)| = |H1(H,V )|t = 1, so by Theorem 2.15 the complements of V t in G are
precisely the conjugates Hv where v ∈ V t.

We will now study the maximal subgroups of G supplementing V t in order to see then
how their intersections look like. So, letM ≤ G be a maximal subgroup ofG supplementing
V t, that is, such that V tM = G. We define W := V t ∩M . Since V t is normal in G, then
so is W in M , and so, since G = V tM , it follows that W is an H-submodule of V t. In
addition, since V t is a completely reducible H-module, there exists an H-submodule U of
V t such that V t = W ⊕ U .

Let H∗ := M ∩HU (note that in general, an H-submodule of V t is normal in G since
it is normalized by both V t and H). We will show that M = W o H∗. Observe that
G = V tH = WUH, so

M = M ∩WUH = M ∩W (HU),

27
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and by the Dedekind Law we have

M = (M ∩HU)W = WH∗.

So, we have to prove that W ∩H∗ = 1. For this, let us first see that UH ∩ V t = U . One
inclusion is clear. To prove the other one, take an element of UH ∩ V t. This element
is of the form uh with u ∈ U and h ∈ H and besides uh = v for some v ∈ V t. Thus,
h = u−1v ∈ H ∩ V t = 1, so h = 1 and u = v. This shows the assertion, and hence,

H∗ ∩ V t = (HU ∩M) ∩ V t = M ∩ (HU ∩ V t) = M ∩ U,

which is equal to 1 since U ≤ V t andM ∩V t∩U = W ∩U = 1. In particular, W ∩H∗ = 1,
so that M = W o H∗. We have proved even more: since V t ∩ H∗ = 1 it follows that
V tH∗ > WH∗ = M , and since M is maximal in G we have V tH∗ = G. Therefore, as
pointed before, H∗ must be a conjugate of H.

Finally, observe that W is a maximal H-submodule of V t since otherwise, if there were
an H-submodule X such that W < X < V , then XH∗ > MH∗ = M so that XH∗ = G,
which is a contradiction. Therefore, we have proved that every maximal subgroup of G
supplementing V t is of the kind WHv with v ∈ V t and W a maximal H-submodule of V t.

Moreover every subgroup of this form is maximal in G: let W ′Hv′ be a subgroup of G,
with W ′ a maximal H-submodule of V t and v′ ∈ V t. Let WHv be a maximal subgroup
of G supplementing V t, with W a maximal H-submodule of V t and v ∈ V t, such that
W ′Hv′ ≤ WHv (notice that it exists since actually W ′Hv′ supplements V t). As seen
before V t ∩WHv is an H-submodule of V t, and then, since W,W ′ ≤ V t ∩WHv < V t,
we have W = W ′. So, W ′Hv′ = WHv′ ≤ WHv, and since the order of both subgroups is
the same, they must be equal. Hence, a subgroup M of G is maximal in G supplementing
V t if and only if M = WHv with W a maximal H-submodule of V t and v ∈ V t, thereby
achieving a complete description of the maximal subgroups of G supplementing V t.

3.2 Intersections of Maximal Subgroups Supplementing V t

We follow with the notation of the previous section. Characterising the maximal subgroups
of G supplementing V t will allow us to study the intersections of maximal subgroups
supplementing V t. In fact, it allows us to prove the following theorem, which shows how
these intersections look like. The proof of the theorem is divided in two cases, both being
constructive. Therefore, it is convenient to read them thoroughly since they will be used
later.

Lemma 3.1. In the situation above, assume M1, . . . ,Mr are maximal subgroups of G
supplementing V t. Then

r⋂
i=1

Mi = W o C,

where W is an intersection of maximal H-submodules of V t and C ≤ Hv for a suitable
v ∈ V t.
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Proof. We proceed by induction on r. The case r = 1 is already proved in the discussion
above, so it suffices to study the intersection K1 ∩K2 with K1 = W1 oC, where W1 is an
intersection of maximal H-submodules of V t and C ≤ Hv1 , v1 ∈ V t and K2 = W2 oHv2 ,
where W2 ≤H V t is maximal in V t and v2 ∈ V t. We distinguish two cases in turn:
W1 +W2 = V t and W1 ≤ W2 (note that there are not more cases since W2 is maximal in
V t).

Assume W1 + W2 = V t. In particular, there exist w1 ∈ W1 and w2 ∈ W2 such that
v1 − v2 = w2 − w1, or equivalently, v1 + w1 = v2 + w2. We define C∗ := Cw1 and
H∗ := Hv2+w2 . Thus, we have

C∗ = Cw1 ≤ (Hv1)w1 = Hv1+w1 = Hv2+w2 = H∗.

Obviously, W1C = W1C
w1 and W2H

v2 = W2H
v2+w2 , and in general WD = WDw for

every H-submodule W of V t, every D ≤ H and every w ∈ V t . In particular, we have

K1 = W1C = W1C
w1 = W1C

∗

and
K2 = W2H

v2 = W2H
v2+w2 = W2H

∗.

Thus, let x1c = x2h be an element of K1∩K2 with x1 ∈W1, c ∈ C∗, x2 ∈W2 and h ∈ H∗.
We have x1 − x2 = hc−1 ∈ V t ∩ H∗ = 1, so it follows that x1 = x2 and h = c. Hence,
K1 ∩K2 ≤ (W1 ∩W2)C∗, and since the other inclusion is trivial, we have the equality, as
we wanted.

Assume now that W1 ≤W2. We observe that

K1 ∩K2 = W1C ∩W2H
v2 = W1C ∩W2C ∩W2H

v2 .

If W2C ≤W2H
v2 , then

K1 ∩K2 = W1C ∩W2C ∩W2H
v2 = W1C ∩W2C = W1C = K1

and we are done. So, we may assumeW2C 6≤W2H
v2 . This, in particular, impliesW2H

v1 6=
W2H

v2 and consequently, v2 − v1 6∈ W2 (this latter assertion follows since otherwise,
v1 = v2 + w2 for some w2 ∈W2, so that we would have W2H

v1 = W2(Hv2)w2 = W2H
v2).

Since V t is completely reducible, there exists U an H-submodule of V t such that
V t = W2 ⊕ U . Thus, there exists a non-trivial element u ∈ U such that v2 − v1 = w + u
with w ∈W2. Hence, Hv2−w = Hv1+u and

K2 = W2H
v2 = W2H

v2−w = W2(Hv1)u.

Let us show that K1 ∩ K2 = W1CC(u). Note that CC(u) = CC(u)u ≤ (Hv1)u, so it
is clear that W1CC(u) ≤ K1 ∩K2. In order to prove the other inclusion let w1c = w2h

u

be an element of K1 ∩ K2 with w1 ∈ W1, w2 ∈ W2, c ∈ C and h ∈ Hv1 . Note that
w1c = w2h

u = w2[u, h−1]h, and since H normalizes U , it follows that [U,H] ≤ U . So,
w1−w2− [u, h−1] = hc−1 ∈ V t∩Hv1 = 1, or in other words, w1−w2 = [u, h−1] and h = c.
Moreover, w1 − w2 = [u, h−1] ∈ W2 ∩ U = 0, so w1 = w2 and [u, h−1] = [u, h] = [u, c] = 0.
Therefore, c ∈ CC(u) and K1 ∩K2 ≤W1CC(u), so that K1 ∩K2 = W1CC(u), and we are
done.
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Remark 3.2. In the remainder of this dissertation we will often refer to the two cases
considered in the proof of this lemma as “the first case" and “the second case".
Remark 3.3. Let us focus on the last part of the proof of Lemma 3.1, where we have
considered the subgroup CC(u). Since u ∈ V t, we have u = (v1, . . . , vt) with v1, . . . , vt ∈ V ,
and then, considering V as an irreducible C-module, we have CC(u) = ∩ti=1CC(vi) =
CC({v1, . . . , vt}).

Recall, on the other hand, that by Remark 2.7, one can give field structure to EndC(V ).
Furthermore, since EndC(V ) acts (with the obvious action) on V , this means that V can
be seen as a EndC(V )-vector space. Thus, if we take φ ∈ EndC(V ), v ∈ V and c ∈ C, then
φ(v)c = φ(v) if and only if φ(vc) = φ(v), and since φ is invertible, this happens if and only if
c ∈ CC(v). Returning to Lemma 3.1, since obviously CC({v1, . . . , vt}) = CC(〈v1, . . . , vt〉),
we can finally conclude that

CC(u) = CC(〈v1, . . . , vt〉EndC(V )),

where 〈v1, . . . , vt〉EndC(V ) means the EndC(V )-subspace of V generated by v1, . . . , vt.
In view of this latter lemma, we consider families of maximal subgroups in general

position supplementing V t, say M1 = W1H
v1 ,M2 = W2H

v2 , . . . ,Mn = WnH
vn , where the

Wi are maximal H-submodules of V t and vi ∈ V t for every 1 ≤ i ≤ n (here, the term
“general position” means that the considered family of maximal subgroups is not redundant,
i.e., we need all of them to get their intersection). Set Uj :=

⋂
1≤i≤jWi. Reordering the

maximal subgroups, we may assume

V t > U1 > U2 > . . . > Ut∗ = . . . = Un = U

for a suitable 1 ≤ t∗ ≤ n.
Assume j < t∗. Then, since all Wi are maximal H-submodules,

Uj
Uj+1

=
Uj

Uj ∩Wj+1

∼=H
Uj +Wj+1

Wj+1
=

V t

Wj+1

∼=H V.

This implies that U ∼=H V t−t∗ . From our discussion of the first case in the proof of Lemma
3.1, since Uj +Wj+1 = V t for every 1 ≤ j ≤ t∗ − 1 we deduce that

M1 ∩ . . . ∩Mt∗ = U oH∗

with H∗ a suitable conjugate of H.
Let r := n− t∗. From the discussion of the second case in Lemma 3.1 we deduce that

there exist v1, . . . , vr ∈ V t such that
n⋂
i=1

Mi = U o CH∗({v1, . . . , vr}).

Write now vi = (wi1, . . . , wit) ∈ V t. Then we have CH∗(vi) =
⋂

1≤j≤tCH∗(wij), and so,
considering V as an irreducible H∗-module, we have

CH∗({v1, . . . , vt}) = CH∗({wij | 1 ≤ i ≤ r, 1 ≤ j ≤ t}).
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Finally, by Remark 3.3, V is an EndH(V )-vector space, so we can conclude saying that

CH∗({v1, . . . , vt}) = CH∗(Z),

where Z = 〈wij | i ≤ i ≤ r, 1 ≤ j ≤ t〉EndH(V ).
Intuitively, what we have done is to start with the maximal subgroup M1 = W1 oHv1

and consider first the maximal subgroups which, by the first case, decrease the order of
the H-submodule on the left of the semidirect product M1 when intersecting with it, and
then consider the maximal subgroups which, by the second case, decrease the order of the
subgroup on the rigth. Thus, we have proved the following theorem.

Theorem 3.4. Let G = V t o H be a finite solvable group such that V is an irreducible
H-module. Let M1 = W1H

v1 , . . . ,Mn = WnH
vn be maximal subgroups of G supplementing

V t, with Wi maximal H-submodules of V t and vi ∈ V t for every i. Then, we have
n⋂
i=1

Mi = U o CH∗(Z)

where U =
⋂n
i=1Wi, H∗ is a conjugate of H and Z is an EndH(V )-subspace of V .

Actually, we can say even more. Let G = V toH be as in Theorem 3.4, and letK = Uo
CH∗(Z) where U is an intersection of maximal H-submodules of V t, H∗ a conjugate of H
and Z an EndH(V )-subspace of V . Consider first the maximal H-submodules W1, . . . ,Wr

of V t such that its intersection equals U , and assume they are in general position. Thus,
if we consider the maximal subgroups M1 = W1H

∗, . . . ,Mr = WrH
∗, then its intersection

must be UH∗.
Let now Z = 〈u1, . . . , us〉EndH(V ) with u1, . . . , us ∈ V , and assume all uj to be pairwise

distinct for every 1 ≤ j ≤ s. Consider the maximal subgroups

Mr+1 = Wk(H
∗)u1 , . . . ,Mr+s = Wk(H

∗)us

for some fixed 1 ≤ k ≤ r, and let D′ be an H-submodule of V t such that V t ∼=H Wk ×D′.
Of course, D′ ∼=H V , and we can then assume Z ≤ D′, just identifying Z with an EndH(V )-
isomorphic EndH(V )-subspace of D′. Thus, it is easy to check that

s⋂
i=1

Mi = UCH∗(Z),

and we conclude then with the following, which is one of the main results in this paper.

Corollary 3.5. Let G = V toH be a finite solvable group such that V is an irreducible H-
module. Then, a subgroup of G is an intersection of maximal subgroups supplementing V t if
and only if it is of the form U oCH∗(Z), with U an intersection of maximal H-submodules
of V t, H∗ a conjugate of H and Z an EndH(V )-subspace of V .

In this way, we have completely described not only the maximal subgroups of G sup-
plementing V t, but also all their intersections. This is a very useful information. Indeed,
for a general finite solvable group G and an irreducible G-module V , we always can work
modulo RG(V ), so that we can apply Corollay 3.5. This is exactly what we do in the next
section, which gives also one of the principal theorems of this paper.
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3.3 Another Approach to the Main Problem

Assume that there exists γ ∈ N with the property that if G is a finite solvable group,
then for every V irreducible G-module G-isomorphic to a complemented chief factor of
G and for every W ≤EndG(V ) V (here, ≤EndG(V ) means EndG(V )-subspace), there exists
W ∗ ≤EndG(V ) W such that CG(W ) = CG(W ∗) and dimEndG(V )(W

∗) ≤ γ.

Theorem 3.6. Let G be as above and let H be an intersection of maximal subgroups of
G. Then, there exists a family of maximal subgroups M1, . . . ,Mn of G such that:

i) H =
⋂n
i=1Mi.

ii)
∏n
i=1 |G : Mi| ≤ |G : H|γ+1.

Proof. We proceed by induction on |G|. We may assume Φ(G) = 1. By Theorem 2.36, we
can assume there exists an irreducibleG-module V such that C = R×D with 1 6= D ∼=G V

t,
where C = CG(V ), R = RG(V ) and t = δG(V ).

If D ≤ H we can then conclude by induction, so we assume D 6≤ H. We can write

H = X1 ∩ . . . ∩Xρ ∩ Y1 ∩ . . . ∩ Yσ,

being Xi maximal subgroups not containing D for 1 ≤ i ≤ ρ and Yj maximal subgroups
containing D for 1 ≤ j ≤ σ. We define X :=

⋂ρ
i=1Xi and Y := ∩σj=1Yj .

By Theorem 2.38 we know that if any of the Xi is a subgroup of G such that XiR =
XiD = G, then Xi = G. Hence, R ≤ Xi for every i, or in other words, R ≤ X. By Lemma
2.31, there exists K ≤ G such that

G/R = DR/RoK/R ∼= V t oK/R,

where V can be seen as an irreducible faithful K/R-module. Note that X/R is an inter-
section of maximal subgroups of G/R supplementing DR/R ∼=K/R V t, so by Lemma 3.1,
there exists a subgroup K∗/R of G/R such that

X/R = T/RoK∗/R,

with T = DR ∩ X. Define D∗ = D ∩ X. Thus, by the Dedekind Law, we have T =
DR ∩X = (D ∩X)R = D∗R, and note that

D∗R/R ∼=G D
∗/(D∗ ∩R) = D∗ ≤G V t.

Since D∗ ≤G V t, we have V t/D∗ ∼= V t∗ for some 1 ≤ t∗ ≤ ρ (note that t∗ 6= 0 since
otherwise, D ≤ X, which is a contradiction since the maximal subgroups Xi supplement
D), and by recalling the proof of Corollary 3.5 we may assume ρ to be equal to t∗ + γ.
Observe that V is isomorphic to a minimal normal subgroup N/R of G/R, which is not
contained in the maximal subgroups Xi/R. Since G = DXi, it follows that D ∩ Xi is
normal in G, so N/R and Xi/R are complements. Therefore, |G : Xi| = |V | for every i.
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On the other hand, Y ≥ D implies XY ≥ XD, and so |XY | ≥ |XD|. Hence,

|X||Y |/|X ∩ Y | ≥ |X||D|/|X ∩D|,

so
|Y : X ∩ Y | ≥ |D : X ∩D| = |D : D∗| = |V |t∗ .

Since D 6= 1, we can work by induction on the order of the group and consider G/D,
so we can assume

∏
j |G : Yj | ≤ |G : Y |γ+1. Hence, since t∗ ≥ 1,

ρ∏
i=1

|G : Xi|
σ∏
j=1

|G : Yj | ≤ |V |t
∗+γ |G : Y |1+γ

≤ (|G : Y ||V |t∗)1+γ

≤ (|G : Y ||Y : X ∩ Y |)1+γ

≤ |G : X ∩ Y |1+γ ,

and the theorem follows.

We can finally prove the following theorem. As it says, we can give an affirmative
answer to our main problem if we assume the hypothesis of Theorem 3.6. To prove it we
follow the proof of Theorem 1.13.

Theorem 3.7. Suppose that there exists a constant γ with the property that for every
finite solvable group H, for every irreducible H-module V isomorphic as an H-module to a
complemented chief factor of H, and for every W ≤EndH(V ) V , there exists W ∗ ≤EndH(V )

W such that CH(W ) = CH(W ∗) and dimEndH(V )(W
∗) ≤ γ.

Then, for every finitely generated prosolvable group G, there exists a constant β such
that cn(G) ≤ nβ.

Proof. By Theorem 1.4 we know that G has PMSG, which means that there exists a
constant α such that for each n ∈ N, we have mn(G) ≤ nα. Now, for n 6= 1, we want to
count the number of subgroups H with |G : H| = n which are intersections of maximal
subgroups. Fix such an H ≤ G, and by Theorem 3.6 we can consider a family of maximal
subgroupsM1, . . . ,Mt such that H = ∩1≤i≤tMi and n1 . . . nt ≤ nγ+1, where ni = |G : Mi|.
There are at most

1 + 2 + . . .+ nγ+1 =
nγ+1(nγ+1 + 1)

2

possible factorizations of numbers ≤ nγ+1 (see [14]), and for each fixed factorization
n1 . . . nt, there are at most nαi choices for the maximal subgroup Mi corresponding to
ni. Therefore, there are at most nα1 . . . nαt ≤ n(γ+1)α choices for the family M1, . . . ,Mt,
and we conclude that

bn(G) ≤ nγ+1(nγ+1 + 1)

2
n(γ+1)α.

Obviously, we always can find a constant β such that

nγ+1(nγ+1 + 1)

2
n(γ+1)α ≤ nβ,



34 3.3. Another Approach to the Main Problem

for any n ≥ 1, so the proof is complete.

Therefore, the main problem of this paper is reduced (as said in the introduction) to
the following one.

Conjecture 2. Does there exist a constant γ with the following property? If G is a
finite solvable group, V an irreducible G-module and W ≤EndG(V ) V , then W contains an
EndG(V )-subspace W ∗ such that:

i) dimEndG(V )(W
∗) ≤ γ.

ii) CG(W ) = CG(W ∗).



Chapter 4

Special Cases

In this final chapter we will give some examples in which Conjecture 2 can be answered
in an affirmative way. In particular, in these examples we will be able to conclude that if
we consider an inverse limit of such groups then we get profinite groups such that cn(G)
is polynomially bounded.

4.1 The Supersolvable Case

It is not difficult to prove that we can find the constant γ we are looking for when G is
a finite supersolvable group. Recall that G is supersolvable if there exists a normal cyclic
series, that is, a normal series

1 = N0 < N1 < . . . < Nr = G,

for some r ∈ N such that each factor Ni/Ni+1 is cyclic.
In such a case, since all subgroups of a cyclic group are characteristic in it, then they

are normal in the whole group, and since a cyclic group has one subgroup for each divisor
of the order of the group, it follows that all chief series of G are of the form

1 = H0 < H1 < . . . < Hs = G

for some s ∈ N, with Hi E G and |Hi/Hi+1| = pi for some prime pi.
Thus, if V is an irreducible G-module G-isomorphic to some chief factor, then |V | = p

for some prime p, and its EndG(V )-subspaces are exactly V and the trivial one. This
means that dimEndG(V )(V ) = 1, and choosing γ = 1, our result follows easily.

It can be deduced then the following.

Theorem 4.1. Let G be a finitely generated prosupersolvable group. Then, there exists
a constant β such that cn(G) ≤ nβ for every n ≥ 1. In other words, {cn(G)}n∈N is
polynomially bounded.

35
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4.1.1 Intersections of Maximal Subgroups with Zero Möbius Number in
Supersolvable Groups

Even if the number of intersections of the maximal subgroups in a finitely generated pro-
supersolvable group G grows polynomially with respect to the index, it may happen that
the amount of such subgroups is really “big” comparing with the number of subgroups of
G with non-zero Möbius number. That is, even if both bn(G) and cn(G) are polynomially
bounded, the probability for a intersection of maximal subgroups to have non-zero Möbius
number is zero. Indeed, in what follows, we give an example in which this phenomenon
happens.

Recall that the Dirichlet Theorem on arithmetic progressions states that for any two
positive coprime integers a and b, there exist infinitely many primes which are congruent
to a modulo b, that is, there are infinitely many primes of the form a + rb, where r ∈ N.
In particular, the arithmetic progression

{1 + r2n | r ∈ N}

contains infinitely many primes, for every n ≥ 1. This implies that there exists an strictly
ascending sequence {pn}n∈N of primes with the property that 2n divides pn − 1.

Let Vm be a 1-dimensional vector space over Fm, where Fm is the field of pm elements.
Let also Hn := 〈xn〉 be a cyclic group of order 2n for n ∈ N. We can define an action of Hn

on Vm, for every m ≤ n, as follows: if v ∈ Vm, then vxn := ζmv, where ζm is an element of
order 2m in F∗m (recall that 2m divides pm − 1). This action is well defined, since m ≤ n
implies ζ2n

m = (ζ2m
m )2n−m

= 1, and so

v1 = vx
2n
n = ζ2n

m v = v.

In addition, note that CHn(Vm) = 〈x2m
n 〉.

Knowing this, we construct the group

Gn = (V1 × . . .× Vn) oHn.

This group is obviously supersolvable, and note that each Vi is an irreducible Hn-module,
so that V1 × . . .× Vn is a completely reducible Hn-module.

Let us consider its maximal subgroups. If a maximal subgroup M of Gn contains
V1 × . . . × Vn, then it corresponds to a subgroup of Gn/(V1 × . . . × Vn) ∼= Hn. Since Hn

has a unique maximal subgroup, we then conclude that there exists a unique maximal
subgroup of Gn containing V1× . . .×Vn, that is M = (V1× . . .×Vn)o 〈x2

n〉. Observe that
this maximal subgroup has index 2.

On the other hand, assume that M is a maximal subgroup of Gn supplementing V1 ×
. . . × Vn. Since Gn is supersolvable, all its maximal subgroups have prime index, and so,
|Gn : M | must be pi for some 1 ≤ i ≤ n. Since |Gn| = p1 . . . pn2n, it follows that all
maximal subgroups supplementing V1 × . . .× Vn are Hall-subgroups, and so, the maximal
subgroups of the same index are all conjugate. Write

Wi := V1 × . . .× Vi−1 × Vi+1 × . . .× Vn.
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Obviously, the subgroupWiHn is maximal in Gn with index pi, and so, we can deduce that
the maximal subgroups of Gn supplementing V1× . . .× Vn are exactly WiH

v
n, with v ∈ Vi.

Note that in this case, we have pi maximal subgroups of index pi for every 1 ≤ i ≤ n.
Consider now the maximal subgroups M1 = Wi o Hv1

n and M2 := Wi o Hv2
n with

v1, v2 ∈ Vi. If v1 6= v2, then M1 6= M2 (since otherwise v1v
−1
2 ∈ NG(WiHn) = WiHn) , and

by the second case of Lemma 3.1, we get M1 ∩M2 = Wi o 〈x2i〉v3 with v3 ∈ Vi. Observe
that this is a subgroup of index pi2i.

As we have seen in Theorem 1.12, if K is a subgroup of G with µGn(K) 6= 0, then there
exists a family of maximal subgroups M1, . . . ,Mt of Gn such that K = M1 ∩ . . .∩Mt and
|Gn : K| = |Gn : M1| . . . |Gn : Mt|. Observing the intersection of maximal subgroups we
have just computed, it follows that the indices of the maximal subgroups whose intersection
equals K must be pairwise distinct. In other words, the indices |Gn : Mi| are pairwise
distinct. Therefore, keeping in mind the first and the second case of the proof of Theorem
3.1, it follows that there exists J ⊆ {1, . . . , n} such that K is equal to a suitable conjugate
of either ∏

j 6∈J
Vj oH or

∏
j 6∈J

Vj o 〈x2〉,

with indices
∏
j∈J pj and 2

∏
j∈J pj respectively. However, as we have seen, we may obtain

as intersection of maximal subgroups something like∏
j 6∈J

Wj o 〈x2i〉

for every i ∈ J with index 2i
∏
j∈J pj . Therefore, we have proved that if b(G) is the number

of subgroups of G with non-zero Möbius number and c(G) is the number of subgroups
which are intersections of maximal subgroups, then b(G)/c(G) ≤ 1/n. In other words, the
probability for an intersection of maximal subgroups to have non-zero Möbius number is
less than 1/n.

Note that if we consider Gn and Gn+1, we can then define a map ϕn,n+1 : Gn+1 → Gn
by sending (v1, . . . , vn+1)xin+1 to (v1, . . . , vn)xin. It is easy to check that these ϕn,n+1 are
all homomorphism of groups, and we could consider the inverse limit

lim
←−
n

Gn

with them. Thus, one can check that in this new prosolvable group, the probability for an
intersection of maximal subgroups to have non-zero Möbius number is

lim
n→∞

1

n
= 0.

4.2 A More General Case

We will consider now a more general case than the supersolvable one. Indeed, we will
consider the case in which G is a finite group such that G′ is nilpotent. Note that since
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G/G′ is abelian and G′ is nilpotent, then such a group must be solvable. We can see in the
following proposition why it is actually a more general case than the supersolvable case.

Proposition 4.2. Let G be a finite supersolvable group. Then, G′ is nilpotent.

Proof. Consider a normal cyclic series

1 ≤ N0 < N1 < . . . < Nr−1 < Nr = G.

Let us denote C := ∩ri=1CG(Ni/Ni−1). Observe that C is normal in G, so [C ∩ Ni, C] ≤
C ∩ Ni−1 for every i. Therefore, the C ∩ Ni form a central series of C reaching 1, so
C is nilpotent. Thus, C ≤ F (G). Let us see that G′ ≤ C. Since Ni/Ni−1 is finite
cyclic for every i, then Aut(Ni/Ni−1) ∼= (Z/|Ni/Ni−1|Z)∗, so Aut(Ni/Ni−1) is abelian.
Therefore, each G/CG(Ni/Ni−1) is abelian, and G′ ≤ CG(Ni/Ni−1) for every i. Thus,
G′ ≤ ∩ri=1CG(Ni/Ni−1) = C, as we wanted.

So, let G be a group such that G′ is nilpotent. Equivalently, G′ is contained in the
Fitting subgroup F (G). Let us analyse this subgroup more closely.

Lemma 4.3. Let G be a finite solvable group. Then F (G)/Φ(G) is a direct product of
complemented minimal normal subgroups of G/Φ(G).

Proof. We can assume Φ(G) = 1. Since F (G) is nilpotent, it is the direct product of
its Sylow subgroups. Note that these Sylow subgroups are normal in G, so that their
respective Frattini subgroup is contained in the Frattini subgroup of G. Thus, they have
trivial Frattini subgroup and hence, each Sylow subgroup of F (G) is elementary abelian.
Therefore, F (G) is a direct product of elementary abelian groups, and then abelian.

Let now N be a minimal normal subgroup of G contained in F (G). Since Φ(G) = 1,
then there exists a maximal subgroupM of G such that G = NM . ConsiderM ∩N . Since
N is normal in G, so is N ∩M is M , and since N is abelian, N ∩M is normal in N . This
means that N ∩M is normal in G, and since N was minimal, it follows that N ∩M = 1.
Thus, N is complemented in G by M .

Consider now M ∩ F (G). By the Dedekind Law we have

N(M ∩ F (G)) = NM ∩ F (G) = G ∩ F (G) = F (G),

and since obviously N∩(M∩F (G)) = 1, it follows thatM∩F (G) complements N in F (G).
In addition, since F (G) is normal in G, so is M ∩ F (G) in M , and since F (G) is abelian,
then M ∩ F (G) is also normal in F (G). Therefore, M ∩ F (G) is normal in G = F (G)M .
Repeating the same argument with F (G) ∩M instead of F (G), and following until we
reach 1, we can conclude with the desired result.

We will see now that F (G)/Φ(G) is not only a direct product of complemented minimal
normal subgroups of G/Φ(G), but it is also complemented in the finite solvable group G.
It is, in fact, an immediate corollary of the following lemma.

Lemma 4.4. Let G be a finite group with trivial Frattini subgroup, and let N be an abelian
normal subgroup of G. Then, N is complemented.



Chapter 4. Special Cases 39

Proof. Let us consider the family

{M ≤ G | NM = G}.

Since Φ(G) = 1, this family is not empty, and choose a minimal M from it. Consider
the subgroup N ∩M . Of course, it is normal in N since N is abelian, and since N is
normal in G, then N ∩M is normal in M . Thus, N ∩M is normal in G = NM . By
contradiction, assume N ∩M 6= 1. If N ∩M ≤ Φ(M), then, by Lemma 2.22 we have
N ∩M ≤ Φ(G) = 1, so we may assume N ∩M 6≤ Φ(M). Let N ′ be a maximal subgroup
of M such that (N ∩M)N ′ = M . Then, G = NM = N(N ∩M)N ′ = NN ′, contradicting
the minimality of M .

Now that we know some properties of the groups G such that G′ is nilpotent, we can
conclude with Theorem 4.6 and Corollary 4.7 and 4.8 after it, which, as said, generalise
the supersolvable case. Moreover, Theorem 4.6 ensures not only that in a finite group G
such that G′ ≤ F (G) we have dimEndG(V )(V ) = 1 for every G-module V isomorphic as
G-modules to a complemented chief factor of G, but also the opposite result. In other
words, it ensures that these two properties are equivalent. In order to prove it we first
require a lemma, which gives some basic properties of the Fitting subgroup.

Lemma 4.5. Let G be a solvable group. Then:

i) If 1 6= N E G, then N contains a non-trivial normal abelian subgroup of G, and
N ∩ F (G) 6= 1.

ii) CG(F (G)) ≤ F (G).

Proof. Let us call G(i) to the terms of the derived series, and let i be the largest integer
such that G(i) ∩N 6= 1. Then, (N ∩ G(i))′ ≤ N ∩ G(i+1) = 1, so that N ∩ G(i) is abelian
and normal in G.

For part ii), suppose by contradiction that CG(F (G)) 6≤ F (G). By i), there exists
A/F (G) E G/F (G), such that F (G) < A ≤ CG(F (G))F (G) and A/F (G) is abelian.
Therefore, A′ ≤ F (G). Note that by the Dedekind Law A = A ∩ CG(F (G))F (G) =
F (G)(A∩CG(F (G))), and γ3(A∩CG(F (G))) ≤ [A′, CG(F (G))] ≤ [F (G), CG(F (G))] = 1,
which shows that A ∩ CG(F (G)) is nilpotent. Therefore, A ∩ CG(F (G)) ≤ F (G), and
A = F (G), which is a contradiction.

Theorem 4.6. Let G be a finite solvable group. Then, G′ is nilpotent if and only if for
every G-module V isomorphic as a G-module to a complemented chief factor of G we have
dimEndG(V )(V ) = 1.

Proof. If Φ(G) 6= 1, consider a chief series passing through Φ(G) and let V be an irreducible
G-module G-isomorphic to a complemented chief factor H/K of G. Note that H 6≤ Φ(G)
since H/K would not be complemented. So, assume Φ(G) ≤ K. In this case Φ(G) ≤
CG(V ), and it is equivalent to say that V is aG-module or aG/Φ(G)-module. Furthermore,
a subgroup of G is nilpotent if and only if so is modulo Frattini. These two observations
imply that we may assume Φ(G) = 1.
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So, assume Φ(G) = 1, and suppose first that G′ is nilpotent. By Lemma 4.3 we have
F (G) = N1× . . .×Nt where each Ni is an abelian minimal normal subgroup of G. Hence,
F (G) is abelian. By Lemma 4.4 there exists H ≤ G such that

G = F (G) oH = (N1 × . . .×Nt) oH.

Moreover, since G′ ≤ F (G), it follows that G/F (G) ∼= H is also abelian.
Let now V be an irreducible G-module G-isomorphic to a complemented chief factor

H/K of G. We consider a chief series passing through F (G), and we observe that since
F (G) is abelian, then F (G) ≤ CG(V ). This means that these chief factors can be seen as
G/F (G)-modules, and since G/F (G) ∼= H, as H-modules.

Since H is abelian, it follows that if we define the map

ι : H −→ EndH(V )

h 7−→ (v 7→ vh),

then it is well defined. Indeed, for every h′ ∈ H we have

ι(h)(vh
′
) = (vh

′
)h = vh

′h = vhh
′

= (vh)h
′

= ι(h)(v)h
′
.

Therefore, each element of H can be viewed as an element of EndH(V ), and since V is
an irreducible H-module, it follows that nor does it have non-trivial proper EndH(V )-
subspaces. Thus, its dimension as an EndH(V )-vector space must be 1.

Suppose now that dimEndG(V )(V ) = 1 for every G-module V isomorphic as a G-module
to a complemented chief factor of G. As we have seen in Lemma 4.3, the Fitting subgroup
of G is a direct product of complemented abelian minimal normal subgroups. Write again

F (G) = N1 × . . .×Nt,

and since in particular the Ni’s are complemented chief factors, we have dimEndG(Ni)(Ni) =
1 for every i. Since F (G) is abelian, Lemma 4.5 shows that actually F (G) = CG(F (G)).
The procedure we will follow now is similar to that of Proposition 4.2. Since F (G) is a
direct product of the Ni’s, then F (G) = CG(F (G)) = ∩ti1CG(Ni). On the other hand, it is
easy to see that G/CG(Ni) is isomorphic to a subgrouup of GLEndG(Ni)(Ni), and since in
our case dimEndG(Ni)(Ni) = 1, it follows that

GLEndG(Ni)(Ni) = EndG(Ni)
∗.

In particular, G/CG(Ni) is abelian, so that G′ ≤ CG(Ni) for every i. We conclude that

F (G) = CG(F (G)) =

t⋂
i=1

CG(Ni) ≤ G′,

as desired.

As this theorem says, we can not find a group such that the pointed dimensions are 1
and G′ is not nilpotent. Now, as expected, we end with the following two corollaries.
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Corollary 4.7. Let G be a finite group such that G′ is nilpotent. Then, for every subgroup
H which is an intersection of maximal subgroups, there exists a family of maximal subgroups
M1, . . . ,Mt satisfying:

i) H = M1 ∩ . . . ∩Mt.

ii) |G : M1| . . . |G : Mt| ≤ |G : H|2.

Proof. We are working with maximal subgroups, so we may assume Φ(G) = 1. It follows
then immediately from Theorem 4.6 and Theorem 3.6.

Corollary 4.8. Let G be a finitely generated prosolvable group with pronilpotent derived
subgroup. Then, there exits a constant β such that cn(G) ≤ nβ for every n ≥ 1.

Proof. By the proof of Theorem 3.7, it only remains to check that if G is an inverse limit
of finite groups with nilpotent derived subgroup, then G′ is pronilpotent. Let {Ni} be a
descending open normal subgroup neighbourhood basis of the identity, and consider the
sections G′Ni/Ni. Obviously, G/Ni is a finite group with nilpotent derived subgroup, that
is, G′Ni/Ni is nilpotent. By Corollary 1 of [17], the derived subgroup of a finitely generated
prosolvable group is closed, so one can check that

G′ ∼= lim
←−
i

G′Ni/Ni.

Therefore, G′ must be pronilpotent.

4.3 Base of size 3

Let G be a permutational group G ≤ Sym(Ω), where Ω is a set of cardinality n. A base
for G is a sequence β = (β1, . . . , βr) from Ω with the property that only the identity of G
fixes each point of β. In other words, CG(β) = 1.

Let us denote by Fp the field of p elements, and by Fdp the Fp-vector space of dimension
d. Seress proves in [18] (Theorem 2.1 and Theorem 3.1) the following.

Theorem 4.9. If G is a solvable irreducible linear group acting on Fdp, then it has a base
of size at most 3. In other words, there exist v1, v2, v3 ∈ Fdp such that CG({v1, v2, v3}) = 1.

As we know, our main problem is to solve Conjecture 2. In that conjecture, the solvable
group G we are considering satisfies the conditions of Theorem 4.9. Even if this result does
not solve Conjecture 2, we have a partial solution. Indeed, if the subspace W ≤EndG(V ) V
that we consider in the conjecture is precisely the whole G-module V , then we can find, by
Theorem 4.9, three elements v1, v2, v3 ∈ V such that CG({v1, v2, v3}) = 1 = CG(V ). Thus,
considering W ∗ = 〈v1, v2, v3〉EndG(V ) we can conclude with γ = 3.

The proof of Theorem 4.9, which, as said, is in [18], is not easy at all. This can give
an idea of how complicated could be solving Conjecture 2 not only for V , but for all
EndG(V )-subspaces of V .
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